
J O U R N A L  OF  M A T E R I A L S  S C I E N C E  1 (1966) 261-268  

Densities, Lattice Parameters and Defect 
Chemistry of Pure Non-stoichiometric 
Compounds 

W ,  van G O O L *  
Materials Research Laboratory, Pennsylvania State University, USA 

Received 25 April 1966 

General relations are derived between the quantities describing the defect chemistry of 
pure, non-stoichiometric compounds and the experimental values of lattice parameters 
and densities of these materials. These relations show how to analyse the experimental 
data without the need for arbitrary assumptions about the defect situation. The theory is 
applied to published data of non-stoichiometric TiO, TiS2, Ti2Sz, and Bi2Tez. The models 
assumed in the literature, in order to interpret the experimental data, are shown to be 
only the most simple among a series of possible defect situations which are consistent 
with the data. 

1, Introduct ion 
The relation between density, lattice parameters, 
and the generalised description of defect 
chemistry was discussed recently for crystalline 
compounds MmX~ containing an impurity 
L~Xj [1 ]. One might expect that a corresponding 
approach could be made in the case of non- 
stoichiometric pure compounds M,Jfk+z (z 
positive or negative). A closer inspection, 
however, shows an essential difference between 
the approximate description of impure solid 
solutions and non-stoichiometric pure com- 
pounds. The reasonable assumption made in the 
description of the impure solid solution is that 
the defect situation is controlled by the impurity. 
For example: in CaF~, the concentration of the 
native defects remains below 0.1 ~ under most 
preparative conditions, but up to 3 5 ~  of 
impurity, like YF3, can be incorporated under 
the same conditions. The incorporated amount of 
impurity is known, either by the sample prep- 
aration method or by chemical analysis after- 
wards. Thus, one parameter controlling the defect 
chemistry can be treated as a known variable. 

The corresponding approach in pure, non- 
stoichiometric compounds would mean that 

the defect situation is controlled by the devia- 
tion from stoichiometry, z. Such an assumption, 
however, would prevent the application of the 
theory in the more interesting situations. These 
situations occur when z changes continuously 
from positive to negative values; for example 
in TiO, where equilibrating the crystals at 
1000~ C in different oxygen pressures causes a 
variation in the composition between z = -t-0.20 
and z = --0.14 [2], while in the stoichiometric 
crystal (z = 0) itself at least 10% of the lattice 
sites are empty. Thus, the defect chemistry is 
much larger than the deviation from the stoi- 
chiometric composition would indicate. In 
view of the situation indicated above, it seems 
to be worthwhile to develop here the necessary 
theory for the pure binary phases. The formulae 
describing the relation between densities, lat- 
tice parameters, and possible defect situations 
are derived in section 2. Several graphical 
representations of the data are possible. The 
choice of the best representation depends some- 
what upon the problem under consideration. 
The methods will be illustrated by using pub- 
lished data concerned with TiO, TiS2, and 
Bi2Te3 (section 3). 

*Present address: Ford Motor Company, Scientific Laboratory, Dearborn, Michigan, USA. 
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2. Mass-Sensitive Properties of 
Non-stoichiometric Pure Compounds 

One way to describe the results of the measure- 
ment of the density d and the lattice parameter 
a (assuming a cubic lattice) of a non-stoichio- 
metric compound M,~Xk+z (stoichiometric for 
z = O) is by means of the total number of 
M-atoms [M~ot] and X-atoms [X~,] per unit 
cell. This total number contains all atoms 
irrespective of their position in the unit cell. 

Then: 

d a 3 = total mass per unit cell 

= ([M~ot]aM + [Xtot]ax)N -1 (1) 

k + z  
[Xtot ] - -  [Mto,] (2) m 

in which aM is the atomic weight of M, ax the 
atomic weight of  X, and N Avogadro's number. 

The numbers [Mtot] and [Xtot] can  be ob- 
tained immediately from equations 1 and 2: 

dNaS(k + z) 
[Xtot] = mam -~ kax  + axz (3) 

dNa3m 
[Mtot] = maM + kax  -5 axz (4) 

One can proceed from this description, 
dealing with total numbers of atoms, to a 
description in terms of defects in the following 
way. Assuming the stoichiometric compound 
M~,X~ without lattice defects to be the ideal 
compound, and assuming the unit M~Xk to 
occur X times in each ideal unit cell, then the 
ideal number of  M-atoms is mx, and of X- 
atoms, k X. Describing the deviation from the 
ideal number of atoms per unit cell with [TM] 
for the M-atoms and [Tx] for the X-atoms, the 
following relations are abvious: 

[TM] = m X - -  [~ltot] (5) 

[Tx] = kx  -- [Xtot] (6) 

[TM] describes the number of M-atoms lacking 
per unit cell; when the value of [TM] is negative, 
an excess of M is present in comparison with 
the ideal structure. 

In defect chemistry, the deviation from the 
ideal structure is described with vacancies 
(VM, Vx), with interstitial atoms (Mi, Xi), and 
with atoms on wrong lattice sites (Mx,  XM) 
[3-5]. Although more detailed descriptions of 
effective charges, association of defects, etc. are 
being used in defect chemistry, their introduction 
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in  the present study has no applicability, The 
mass in a unit cell, as calculated from experi- 
mental values of density and lattice parameter, 
is not influenced by these details. Therefore, 
concentrations [VM]tot, [Vx]tot, [Mi]tot, [Xi]tot, 
[Mx]tot, [XM]tot are used, indicating the total 
number of each defect per unit cell, irrespective 
of charge and association. Obviously, [TM] 

summarises all possibilities for removing M 
from the lattice. 

DMi --  - -  

etc. 

[TM]= [Vu]tot-- [Mi]tot+ [XM]tot-- [Mx]tot (7) 

Here, both [VM] and [XM] mean a decrease 
of M-atoms: in the former case, because 
M-sites are empty; in the latter case, because 
a M-site is occupied by X and thus cannot 
contain M. [Mi] and [Me] indicate additional 
M-atoms and should be counted as a negative 
removal. 

In the same way, 

[ T x ] =  [ Vx] to t - -  [Xi]tot@ [Mx] to t - -  [XM]tot (8) 

One of the aspects of defect chemistry is the 
recognition of a common defect state in several 
samples. That means in the present case that a 
change of the composition may change the 
absolute values of the defect concentrations, 
but the ratio of these concentrations may 
remain constant. By expressing the concentra- 
tions of the defects relative to the total amount 
(ZAll) of all defects 

ZAll = [Vx]to, + [VM]tot + [Mi]tot 
+ [Xi]tot + [XM]tot + [Mx]tct (9) 

the relative quantities p are obtained: 

[VM]tot t 
PVM-- ZAll (10) 

[Mi]tot  
ZAll 

Then (7) and (8) can be rewritten 

[TM] = (PVM -- PMi + PXM -- PMx) ZAll (11) 

[Tx] = (Pvx -- Pxi + PMx -- PXM) ZAll (12) 

or, introducing 

R M  = DVM - -  P M i  @ P X M  - -  P M x  (13) 

R x  = P V x  - -  P x i  -1- D M X  - -  D X M  (14) 
then 

[TM] = RM ZAll (15) 

[Tx] = R x  ZAll (16) 
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Although [TM] and [Tx] can be derived from 
the experiments by means of (3), (4), (5), and 
(6), there is no way to determine XAll from 
density and lattice parameter data. Thus, the 
individual values of RM and R x  cannot be 
derived, and it is not possible to check the 
constancy of the defect situation along these 
lines. One can try to evaluate their ratio R 

R x  [Tx] 
R-~- RM [TM] ( 1 7 )  

since constant p values also imply a constant 
ratio R. However, there are two disadvantages 
to this method. In some defect situations, R M  
will be zero. For  example, when in TiOo.8 a pure 
oxygen vacancy model should predominate, 
then PVx ~ XAll = 1, all other p's are zero, 
R x  = 1 and RM = 0. The experimental devia- 
tions will make R large and variable. Every 
other choice, such as RM/Rx, or RM/(Rx + 
RM), may suffer occasionally from this difficulty. 
The second disadvantage is that valuable 
information contained in [TM] and [Tx] is lost 
if only R is calculated (see section 3.1). The best 
approach is to plot [TM] and [Tx] in rectangular 
co-ordinates: points with the same defect 
situation will have constant RM and Rx, and 
will be found on a straight line through the 
origin. Note that the reverse statement is not 
true: even when RM and R x  are constant, the 
defect chemistry may change (equations 13 and 
14). 
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Figure I [TM] versus [T x] for Ti01+ z calculated from 
experimental values of d, a, and z. (3 calculated from 
data of Straumanis. �9 calculated from data of Andersson, 
The numbers in the f igure correspond to the experiment 
numbers in table I. 

Finally, a few formulae are presented which 
may be helpful, and which can be easily derived 
from the foregoing equations. 

Since da 3 is the mass in one unit cell, and 
x(maM + kax)/N describes the mass in one 
unit cell in the ideal material, their ratio y 

da~N 
Y = x(maM + kax) (18) 

indicates how much the experimentally deter- 
mined mass of the unit cell deviates from the 
theoretical mass. When the relative atomic 
weight A x  of X is introduced: 

kax 
A x  maM + kax (19) 

the following relations can be derived 

x(k  § z)y (20) 
[Xtot] - k + A x z  

mkxy 
[Mtot] - -  k -+-Axz (21) 

kx[k(1 --  y) + ( A x  --  y)zl 
[Tx] = k § A x z  (22) 

mx[k(1 -- y) + (Axz)] 
[TM] = k + Axz  (23) 

These equations relate the characteristic quanti- 
ties directly to the experimental data. 

Sometimes, one wants to know the densities 
corresponding to some special defect model. 
Knowledge or assumption of the defect model 
implies that the p values and thus RM and Rx  
are known. When both RM and R x  are zero, 
then [TM] and [Tx] are zero (equations 15 and 
16), and thus [Mtot] = mx and [ X t o t ]  = k X 
(equations 5 and 6). Then da 3 will have the value 
of the ideal structure (equation 1). Note that 
this situation does not mean that the individual 
p's are zero. The defect situation PVM = PMi, 
all other p's = 0, for example, may have y = 1. 

When RM or R x  or both are different from 
zero, their appropriately chosen ratio can be 
considered. Suppose R M  3/= O, then with equa- 
tions 17, 22, and 23 

R = k[k(1 - - y )  + (Ax --y)z] (24) 
m[k( t  - y) + (Axz )]  

y can be solved from this equation, and after 
combination with equation 18 one finds 

263 



W. V A N  G O O L  

d = x(mR -- k) (roaM + k a x  q- axz) 
Na3(mR -- k --  z) (25) 

A slight rearrangement  o f  this equat ion 
permits the calculation o f  a 3 when d and R 
are known.  When  the individual values o f  
RM and R x  are preferred, the following equa- 
tions can be used 

( m R x  -- kRM) (k + A x z )  
Y = k ( m R x  --  kRM --  RMZ) (26) 

d = x ( m R x  -- kRM) (maM q- k a x  + axz)  
Na3(mRx --  kRM - -  R M Z )  (27) 

3. Examples 
3.1. N o n - s t o i c h i o m e t r i c  T i t a n i u m  M o n o x i d e  

Experimental  values o f  z, d, and a for  TiOl+z 
have been reported by Straumanis and Li [2] 
and Andersson et al [6]. Al though the d and a 
values o f  the investigators differ somewhat,  
there is better agreement  in the calculated mass 
per unit  cell. Therefore, all values are reported 
in the sequence of  increasing z, independent  o f  
their origin (see table I). 

The sodium chloride structure is assumed for  
TiO. Thus,  X = 4, k = 1, m = 1, aM = aTi = 
47.90, a x  = ao = 16.00, A x  = 0.2504. 

One result is immediately obvious f rom the 
calculations: the ratio R is no t  constant.  Thus,  
there is little significance in discussing the results 
in terms of  R. Furthermore,  the calculated 
values o f  R show that  informat ion is lost when 
R is used instead o f  [TM] and [Tx]. For  example 
with z = 0.00, the value R = 1.00 is obtained. 
Equat ion 24 shows that  z = 0.00 always leads 
to R = k/m, and that  no  informat ion about  
defect chemistry is revealed. In  this situation, 
the use o f  [Mtot] and [Xtot] or  [TM] and [Tx] 

gives more  information (fig. 1). Here, [ T M ]  = 

[Tx] = 0.591 for  z = 0.00 shows that  at least 
(0.591/4.0) • 100 ~ 1 5 ~  of  either type o f  
sites is defective at the stoichiometric composi-  
tion. Individual values o f  p cannot  be obtained, 
but  the defect situations [VM] ~ [Vx], [XM] ,~ 
[Mx], [VM] ~ [Mx] represent the simplest 
possibilities. 

For  z @ 0 ,  either [TM] ( z > 0 ) ,  or  [Tx] 
(z < 0) predominates.  So, for z = 0.25, at least 
(0.934/4.000) • 100 ~ 23 ~ o f  the M-sites, 
and at least (0.168/4.000) • 100 = 4 .2~  of  the 
X-sites are defective. Suppose for a momen t  
that  this min imum possibility should represent 
the actual situation. Then, the defect situation 
could be described with [V~r] or [X~r] or 
p z [V~],  etc. for  84 ~ .  One can wonder  why 
the analysis does not  show a more  constant  
value o f  R. The reason is that, in terms of  defect 
chemistry, the concentrat ion range between 
z = 0.01 and z = 0.25 is quite small. The whole 
range belongs to the transit ion f rom [TM] 
[Tx] to [TM] >~ [Tx] ~ O. This is demonstrated 
in fig. 2, where the quanti ty [TM]/([TM] + 
[Tx]) is plotted as a function o f  log z. Then, it is 
obvious that  the whole range between TiO0.~9 
and TiO1.01 (which is a large one in terms of  
defect chemistry) can be described with [TM] 
[Tx] = 0.59, or  R = 0.5. Had  measurements 
in this range been made,  they would probably  
have revealed a constant  R. 

3.2. Non- s to i ch iome t r i c  Ti tanium Su lph ide  

Bernard and Jeannin have published data about  
non-stoichiometric t i tanium sulphides [7]. One 
series refers to TiS2 with an excess Ti. In  the 
terminology used in this article, that  situation is 
described by TiS2+z, z < 0. The hexagonal unit 

TABLE I Defect chemistry of T]OI+ z. 

Source* z d(g/cm z ) a(/~) y [Mtot] [Xtot ] [TM] [Tx] R 

1 A --0.284 5.01 4.196 0.8722 3.756 2.689 +0.244 +1.311 5.37 
2 S --0.140 4.998 4.1850 0.8632 3.578 3.077 +0.422 -?0.923 2.19 
3 A --0.108 4.96 4.188 0.8585 3.530 3.148 +0.470 +0.852 1.81 
4 S --0.030 4.953 4.1780 0.8512 3.430 3.328 +0.570 +0.672 1.18 
5 A --0.005 4.95 4.182 0.8531 3.417 3.400 +0.583 +0.600 1.03 
6 S 0.060 4.908 4.1733 0.8406 3.313 3.511 +0.687 - t -0 .489 0.711 
7 A 0.116 4.89 4.175 0.8386 3.260 3.638 +0.740 +0.362 0.489 
8 S 0.150 4.854 4.1689 0.8287 3.195 3.674 +0.805 +0.326 0.405 
9 A 0.195 4.83 4.172 0.8265 3.152 3.767 +0.848 - t -0 .233 0.275 
10 S 0.200 4.803 4.1661 0.8184 3.117 3.741 +0.883 +0.259 0.294 
11 A 0.250 4.77 4.169 0.8145 3.066 3.832 +0.934 - t -0 .168 0.180 

* S = Straumanis ; A = Andersson. 
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Figure 2 Defect chemistry of TiOl+ z as a function of log z. 
Compare subscript of fig. 1. 

cell o f  the ideal c o m p o u n d  TiS2 is supposed to 
have 1 molecule  per unit  cell. Thus, m = l ,  
k = 2 ,  X = 1, a ~  = a T i  = 47.90 a x  = a s  = 

32.064, A x  = 0.5724. The second series can be 
referred to TizS3 as the ideal structure. The  
hexagonal  unit  cell contains 4 sulphur a toms 

T A B L E  II Defect chemistry of titanium sulphides. 

and 8/3 t i tan ium a toms (statistical distribution).  
Thus,  the descript ion is done  with Ti2S3+~ 
(here z can be bo th  posit ive and negative),  
m = 2, k = 3, X = 1.3333, aM = a r i  = 47.90, 
a x  = a s  = 32.064, A x  -~  0.5010. 

In table II, the calculated values of  the 
vo lume of  the uni t  cell V,  [ T M ] ,  [ T x ] ,  [Mtot], 
[Ztot], and R are repor ted  in addi t ion to the 
exper imental  values o f  a, c, and d (a and c 
refer to the hexagonal  uni t  cell). 

The results o f  the calculat ions show that  the 
descript ion given by Bernard and Jeannin  is 
only approximate .  They have concluded that  the 
sulphur lattice is largely intact. The deviat ion 
f rom stoichiometry is explained by an excess o f  
interstit ial  t i tanium or by t i tanium vacancies. 
This si tuation should cor respond with [ T x ]  = 

0.00, [Xtot] = 2.00, R ----- 0.00 for  "TiS2" ,  and 
with [ T x ]  = 0.00, [Ztot] = 4.00, R ---- 0.00 for 
"Ti2S3". It  is t rue that  general ly[  [ T ~ ] l i s  

Compound z d a c V [TM] [Tx] [Mto t ]  [Xtot] R 

"TiS2" --0.081 3 . 2 9 4  3 .4085 5 .7028 57 .376  --0.0402 0 .0038 1.040 1.996 --0.094 
--0.081 3 . 2 9 3  3.4091 5 .7019  57 .388  --0.0401 0 .0040  1.040 1.996 --0.100 
--0.096 3 . 3 0 6  3 .4089 5 .7060 57 .422  --0.0495 0 .0018 1.050 1.998 --0.037 
--0.097 3 .298  3 .4095 5 .7040 57 .422  --0.0472 0.0071 1.047 1.993 --0.151 
--0.125 3 . 2 9 6  3 .4109 5 .7077 57 .507  --0.0568 0 .0184  1.057 1.982 --0.324 
--0,131 3 .313  3 .4109 5 .7089 57 .519  --0.0644 0 .0106  1.064 1.989 --0.165 
--0.144 3 . 3 2 6  3.4123 5 .7119  57 .596  --0.0742 0 .0063 1.074 1.994 --0.085 
--0.159 3 .328  3 .4125 5.7138 57 .622  --0.0802 0 .0114 1.080 1.989 --0.143 
--0.175 3 .357  3 .4132 5.7153 57.661 --0.0956 0 .0006 1.096 1.999 --0.006 
--0.184 3 . 3 4 4  3 .4134 5.7166 ~ot calculated 
--0.181 3 . 3 4 5  3.4123 5 .7166 57 .644  --0.0933 0 .0113 1.093 1.989 --0.121 
--0.184 3 .358  3.4131 5 .7176  57.681 --0.0992 0 .0038 1.099 1.996 --0.038 
--0.177 3 .355  3.4138 5 .7170 57.698 --0.0963 0 .0015 1.096 1.999 --0.016 

"TizS3" 0.190 3.532 3 .4213 11.4400 115.965 0.1758 0.0271 2.491 3.973 0.154 
0.186 3.538 3 .4219 11.4419 116.025 0.1687 0.0207 2.498 3.979 0.123 
0.174 3.529 3 .4218 11.4418 116.017 0.1703 0.0383 2.496 3.962 0.225 
0.170 3.537 3 .4222 11.4422 116.048 0.1624 0.0307 2.504 3.969 0.189 
0.146 3.532 3 .4226 11.4402 116.055 0.1560 0.0507 2.511 3.949 0.325 
0.098 3.585 3 .4243 11.4368 116.136 0.0964 0.0187 2.570 3.981 0.194 
0.096 3.587 3 .4244 11.4383 116.158 0.0936 0.0170 2.573 3.983 0.181 
0.084 3.528 3 .4245 11.4352 116.133 0.1315 0.0908 2.535 3.909 0.690 
0.066 3.600 3 .4249 11.4334 116.142 0.0719 0.0222 2.595 3.978 0.309 
0.040 3.602 3 .4245 11.4338 116.119 0.0598 0.0375 2.607 3.962 0.628 
--0.018 3 . 6 2 2  3 .4272 11.4320 116.284 0.0161 0.0479 2.651 3.952 2.986 
--0.028 3 . 6 4 0  3 .4279 11.4318 116.329 0.0026 0.0334 2.669 3.967 --12.722 
--0.068 3 . 6 7 6  3 .4310 11.4339 116.561 --0.0527 0 .0135 2.719 3.986 --0.256 

0.100 3 .673  3 .4335 11.4333 116.725 --0.0690 0 .0332  2.736 3.967 --0.481 
--0.162 3 .701  3 .4388 11.4327 117.080 --0.1277 0 .0348 2.794 3.965 --0.273 
--0.214 3 .718  3 .4405 11.4322 117.190 --0.1685 0 .0506  2.835 3.949 --0.301 
--0.242 3 .747  3 .4417 11.4310 117.260 --0.2062 0.0383 2.873 3.962 --0.186 
--0.244 3 .737  3 .4416 11.4314 117.257 --0.1995 0 .0504  2.866 3.950 --0.253 
--0.246 3 .743  3 .4422 11.4298 117.281 --0.2057 0 .0448 2.872 3.955 --0.218 
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larger than l [Tx ] [, but deviations of 20 to 
30 ~ from this proposed defect situation are not 
uncommon, as can be seen from the R values. 
The very large values of  R found in the neigh- 
bourhood of stoichiometric Ti2S3 do not make 
much sense, since all experimental errors are acc- 
umulated here, and appear greatly exaggerated. 

It is, of  course, possible to interpret the 
calculated values of R in exact p values. For 
example, R - = - - 0 . 1 5  in the case of "TiS2" 
means: 

P V x  - -  P x i  "]- P M x  - -  P X M  = 

- -  0.15 ( P V M  . P M i  ~- P X M  - -  P M x )  
o r  

P V  x - -  P x i  -[- 0.15 P V M  - -  0.15 p M  i 

q- 0.85 PMx -- 0.85 PXM -~ 0 (28) 

This represents the maximum information 
obtainable from the experiments. All other 
interpretations are assumptions. Thus, as- 
suming absence of antistructural defects, for 
example, means Px~z = PMx = O. When the 
further assumption is made of an excess of 
interstitial cations, and cation vacancies are 
assumed to be absent (PVM = 0), equation 28 
becomes 

P v x  - -  P x i  - -  0.15 P M i  = 0 (29) 

The simplest defect situation corresponding 
to this equation is found for Pvx  = 0.15 P~i  
and Px~ = 0, showing that a certain amount of 
empty anion sites must be present. It seems 
doubtful, however, that the pursuit of the 
interpretation along these lines will lead to 
definitive results. All deviations from the assumed 
defect situation may be due to experimental un- 
certainties. This may be regretted in regard to the 
very careful experimental work of Bernard and 
Jeannin, but it simply represents the limits of the 
information obtainable from density and lattice 
parameter data. 

The examples of the titanium sulphides are 
illustrative in another way, too. According to 
the theory developed in this article, all defect 
situations with the same [TM] and [Tx] are 
reconcilable with one set of experimental data. 
That  means, for example, in the case of TiS2, 
that in addition to the minimum number of 
interstitial cations ([T~] = [Mi]) more cations 
may be shifted from lattice sites to interstitial 
sites ([TM] = [ V M ] -  [Mi]). In some defect 
situations, such an additional shift is improbable, 
since the increase of entropy does not compensate 
for the increase in energy. In the case of TiS2, 
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however, the excess titanium cations are sup- 
posed to be present between two adjacent 
sulphur layers (TiS2 as a pure material should 
have a layer structure). Additional shifts of 
lattice cations to interstitial layers cause the 
difference between a "lattice layer of cations" 
and an "interstitial layer of cations" to dis- 
appear. This may mean that the free energy 
becomes more favourable for larger disorder. 
This particular behaviour can occur in certain 
lattice types with rather extensive disorder 
situations (for example, in spinels, fluorites, 
CdI~ structures). It stresses the danger of using 
only the most simple defect situations early in 
the analysis of the density data. Also interesting 
in this respect is "TizS3". Here, the titanium 
cations occupy statistically only a fraction of 
the available sites. This complication has been 
avoided in the calculations represented in table 
II, by assuming that there are 2.67 cation sites 
in a unit cell. This number corresponds to the 
number of cations in a unit cell with the composi- 
tion Ti2.~vS4.00. The calculations can, of course, 
also be made with a larger number of cation 
sites. Then the same values of [Mtot], [Xtot], 
and [Tx] will be found as with the calculations 
represented. [TM], however, will be larger. This 
example shows that the calculations can be 
adapted easily to different descriptions of the 
defect structure. 

3.3. Non-stoichiometr ic  Bismuth Tolluride 
Recently, density measurements of Bi2Te3+, 
(z positive and negative) were reported [8]. 
The density data were combined with electrical 
data from the literature, and theoretical values 
of the densities were calculated for two defect 
situations. While the abstract of the article 
states that "precision density measurements 
reveal the existence of antistructure defects", 
the calculations show that antistructural dis- 
order does not lead to agreement between the 
experimental and theoretical values of the 
densities. The authors mention some factors 
that may explain the disagreement, and thus 
retain the possibility that an antistructural 
defect situation still exists. 

According to the theory in section 2, the 
quantities characteristic for the defect situation 
cannot be calculated when the lattice parameters 
are unknown. It is possible, however, to make 
some reasonable assumptions about the possible 
changes of the lattice parameters when the 
stoichiometry is changed, and to see if, in 
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addition to the antistructural disorder, other 
defect situations are possible. 

Fig. 3 shows the assumptions made in the 
calculations. Assumption 1 (constant lattice 
parameter) should correspond to the assumption 
used by Miller and Li [8]. Assumptions 2, 3, 
4, and 5 correspond to a change of 0.1% in the 
lattice parameters for each change of 1 at. % 
tellurium in the composition. A much larger 
change of lattice parameter cannot be excluded. 
The materials with excess tellurium, for example, 
can be described as a crystalline solid solution 
of Bi2Te3 (60 at .% tellurium) and Bi2Te4 
(67.5 at. 9/00 tellurium), each having a correspond- 
ing structure and space group. If changes of 
109/oo of the lattice parameters are acceptable 
between these structures, a 1.3 % change should 
occur for each 1% change in tellurium. As- 
sumptions 6 and 7 are based upon this larger 
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Figure 3 Assumpt ions  made about the lattice parameter 
a as a function of the composition in Bi2Te3+ z. 

change of lattice parameters. Other assumptions 
than those in fig. 3 can be made, but the purpose 
of the calculations is only to obtain some idea 
about which of all defect situations are reconcil- 
able with the observed densities. The material 
has a hexagonal structure. Thus, in addition 
to the lattice parameter a, the parameter e 
must be specified. Since the changes in c were 

assumed to be proportional to a, fig. 3 also 
represents c (then the scale must be multiplied 
by 30.487/4.3835). Using the assumed values 
of the lattice parameters and the densities and 
compositions reported in reference 8, the 
characteristic quantities [TM] and [Tx] were 
calculated. The results are shown in fig. 4. 

Also shown are the lines representing some 
simple defect situations, that are summarised 
in table III. 

T A B L E  I I I  Some simple defect situations. 

Situat ion Defect  Charac ter i sa t ion  N a m e  of  
mode l  

Excess Bi VTe [Tx] positive, 
[TM] = 0 Vacancy 

Bii [TM] negative,  
[Tx] = 0 Intersti t ial  

BiTe [TM] negative,  
[Tx] positive, 
[TM]/[Tx] =- -1  Antistructural 

Excess Te VBi [TM] positive, 
[Tx] = 0 Vacancy 

Tei [Tx] negative, 
[TM] = 0 Antistructural 

TeBi [TM] positive, 
[Tx] negative, 
[TM]/[Tx] -- --1 Antistructural 

It is obvious that each of the simple defect 
situations is reconciled with the experimental 
density data, even when the lattice parameter 
varies only within the limits assumed in the 
calculations. 

Another interesting point is that assumption 
1 (constant lattice parameter) leads to a defect 
situation that can be characterised with [TM]/ 
[Tx] = [RM]/[Rx] = --0.63; whereas a ratio 
--1.00 would be required for a pure antistruc- 
tural model. Thus, it is clear that assumption 1 
excludes the possibility of a pure antistructural 
model. This assumption was also used in 
reference 8. It is also remarkable that a calcula- 
tion of V, using the theoretical density lines in 
reference 8 and the corresponding values of 
[TM] and [Tx], does not lead to a constant 
value of V, as should be expected. Further- 
more, the statement in that article that bismuth 
telluride is stoichiometric at the composition 
where p-type conductivity changes into a 
n-type conductivity is incomprehensible. Bi2Te3 
is stoichiometric when it contains 60.0% 
tellurium. The fact, that there is some change in 
conductivity at 62.8 % tellurium, indicates that 
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labelled Vsi, TeBi, etc. represent the simple defect situations described in table III. The percentages refer to the 
composition of bismuth telluride. 

there must be some major change in defect 
chemistry at this composition�9 But, meaning- 
ful terminology requires that we describe 
bismuth telluride with 62.8 ~ tellurium as non- 
stoichiometric and defective�9 

To summarise-  the inconsistencies of the 
reported calculations together with the lack of 
lattice parameter data leave the defect chemistry 
of Bi~Te3 uncertain�9 Nevertheless, the anti- 
structure model is not impossible and to a 
certain extent even plausible�9 It would be inter- 
esting to have available accurate lattice para- 
meters in addition to the accurate values of the 
densities. A check of the model is possible, at 
least within the limits stressed earlier in this 
article�9 
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